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Abstract- In this paper we present a method for 
unsupervised image clustering and   B-spline curve interpolation 
for remove the noise. Images are clustered such that the mutual 
information between the clusters and the image content is 
maximally preserved. The clustering principle is applied to both 
discrete and continuous image representations, using Gaussian 
densities. We find that whole-brain analysis in this manner 
allows automatic classification of images based on Disease if the 
whole brain is included, If a sequence of planar points and 
vectors are given then a free-form curve can calculated which 
interpolates the points and has the given tangent vectors in these 
points. Our method gives a fast interpolation of these data using 
extra control points. Then we provide a method which allows to 
interpolate the same set of data without any predefined order of 
the points, i.e. a set of scattered points with the vectors. 
 
Keywords: Unsupervised image clustering, B-spline curve 
interpolation, mixture of Gaussians. 
 

INTRODUCTION 
Image clustering and categorization is a means for high-level 
description of image content. The goal is to find a mapping of 
the archive images into classes (clusters) such that the set of 
classes provide essentially the same prediction, or 
information, about the image archive as the entire image set 
collection. The generated classes provide a concise 
summarization and visualization of the image content. Image 
archive clustering is important for efficient handling (search 
and retrieval) of large image databases. In the retrieval 
process, the query image is initially compared with all the 
cluster centers. The subset of clusters that have the largest 
similarity to the query image is chosen, following which the 
query image is compared with all the images within this 
subset of clusters. Search efficiency is improved due to the 
fact that the query image is not compared exhaustively to all 
the images in the database. Image clustering may be 
performed using discrete image representations (e.g. 
histograms) as well as continuous image representations (e.g. 
probabilistic continuous image modeling based on mixture of 
Gaussian densities). In recent work, that compares between 
various image representation schemes, image modeling based 
on mixture of Gaussian densities was shown to outperform 
discrete image representations (such as the well-known color 
histograms, color correlograms, and more) . In the current 
work we demonstrate unsupervised clustering in both the 
discrete and continuous image representations domains. The 

clustering method presented in this work is based on the 
information bottleneck (IB) principle. Characteristics of the 
proposed method include: 1) Image models are clustered 
rather than raw image pixels (image models may be discrete 
Or continuous). 2) The IB method provides a simultaneous 
construction of both the clusters and the distance measure 
between them. 3) A natural termination of the bottomup 
clustering process can be determined as part of the IB 
principle. This provides an automated means for finding the 
relevant number of clusters per archive. 4) The continuous 
agglomerative version of the IB clustering scheme is extended 
to include relaxation steps for better clustering results. 
Rational B-spline curves and surfaces as the generalization of 
B-spline curve and surface are widely used in image 
processing system. Basically these methods have been 
developed for approximating points, but they can be used as 
interpolating curves or surfaces as well. In this paper we will 
use the rational B-spline curve for a special interpolation 
problem, where beside the points the tangent vectors of the 
future curve are also given. The method is similar to the case 
of B-spline: the control points of the future curve is calculated 
from the given data, so finally it will be an approximating 
curve, but given points will be on the curve and it will have 
the given tangent vectors. This problem can also be 
formulated without giving the order of points. Since all the 
basic free-form methods are defined with a sequence of points 
as input data, in this case we use an artificial neural network 
to order the points and then we apply the method mentioned 
above. 
Grouping pixels into clusters and remove the noise using 
Bezier curves 
In the first layer of the grouping process the raw pixel 
representation of an input image is shifted to a mid-level 
representation. The image representation may be discrete  
(e.g. histograms) or continuous. Histograms are well known in 
the literature and have been used substantially .    
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Figure 1: Input image (left) Image modeling via Gaussian 
mixture (right) 
 
In this section we briefly introduce the more recently 
proposed continuous image representation schemes. In the 
continuous domain, each image is modeled as a mixture of 
Gaussians in the color feature space. In order to include 
spatial information, the (x; y) position of the pixel is appended 
to the feature vector. Following the feature extraction stage, 
each pixel is represented with a five-dimensional feature 
vector, and the image as a whole is represented by a collection 
of feature vectors in the five dimensional space. Pixels are 
grouped into homogeneous regions, by grouping the feature 
vectors in the selected feature space. The underlying 
assumption is that the image colors and their spatial 
distribution in the image plane are generated by a mixture of 
Gaussians. Each homogeneous region in the image plane is 
thus represented by a Gaussian distribution, and the set of 
regions in the image is represented by a Gaussian mixture 
model. The distribution of a d-dimensional random variable is 
a mixture of k Gaussians if its density function is: 

f(y) =∑ ௞௝ୀଵ݆ߙ ଵට(ଶπ)ౚ|∑ ୨|exp{-
ଵଶ ݕ) − ்(௝ߤ ∑ ݕ) − ௝)ିଵ௝ߤ } 

 The Expectation-Maximization (EM) algorithm is used to 
determine the maximum likelihood parameters of a mixture of 
k Gaussians in the feature space (similar to). The Minimum 
Description Length (MDL) principle serves to select among 
values of k. In our experiments, k ranges from 4 to 8. Figure 1 
shows two examples of learning a GMM model for an input 
image. In this visualization each localized Gaussian mixture is 
shown as a set of ellipsoids. Each ellipsoid represents the 
support, mean color and spatial layout, of a particular 
Gaussian in the image plane. 
 

ALGORITHM 
The algorithm starts with the trivial clustering where each 
cluster consists of a single point. In order to minimize the 
overall information loss caused by the clustering, classes are 
merged in every (greedy) step such that the loss in the mutual 
information caused by merging them is the smallest. Let c1 
and c2 be two clusters of symbols from the alphabet of X, the 
information loss due to the merging of c1 and c2 is: 
d(c1; c2) = I(ܥ௕௘௙௢௥௘; Y ) ¡ I(ܥ௔௙௧௘௥; Y ) ≥ 0 
where I(ܥ௕௘௙௢௥௘; Y ) and I(ܥ௔௙௧௘௥; Y ) are the mutual 
information between the classes and the feature space before 
and after c1 and c2 are merged into a single class. Standard 
information theory manipulation reveals: 

d(c1; c2) =∑ ܲ(ܿ௜௬,௜ୀଵ,ଶ ,y)log
௉(௖೔,௬)௉(௖೔)௉(௬) 

- ∑ ܲ(ܿଵܷܿଶ, ௬(ݕ log
௉(௖భ௎௖మ,௬)௉(௖భ௎௖మ)௉(௬) 

=  ∑ ܲ(ܿ௜௬,௜ୀଵ,ଶ ,y) log
௉(௬|௖೔)௉(௬|௖೔௎௖ଶ) 

 
=  ∑ ܲ(ܿ௜௬,௜ୀଵ,ଶ  (௜ܷܿ2ܿ|ݕ)ܲ	||(௜ܿ|ݕ)ܲ	௄௅ܦ (
 
Hence, the distance measure between clusters c1 and c2, 
derived from the IB principle, takes into account both the 
dissimilarity between the distribution p(ݕ௝,ܿଵ) and p(ݕ௝,ܿଶ) and 
the size of the two clusters. The greedy AIB algorithm 
arranges the objects in a tree structure, which has many 
advantages for database management. 
The algorithm also enables to define the optimal number of 
clusters that represent the objects in the database. However, 
the main obstacle to the greedy agglomerative procedure is 
that finding an optimal clustering solution is not guaranteed. 
In fact, it is not guaranteed to find a stable solution, in which 
each object belongs to the cluster it is most similar to. The 
issue of cluster optimization is common in many (both top-
down and bottom-up) hierarchical clustering techniques. 
These techniques, due to their greedy nature, often require 
additional relaxation steps for cluster optimization. 
 

INTERPOLATION OF SCATTERED POINTS WITH TANGENT 

VECTORS 
This problem is similar to the previous one, but the given 
points have no predefined order, i.e. we do not know which 
point has to be the first and which one is the last one. Since 
the rational B-spline method can be applied only on a 
sequence of points (and weights), first of all we have to order 
the points. For this purpose an artificial neural network will be 
used. After this step the same procedure described above can 
be applied. Now after a short description of the applied net, 
the Kohonen network the ordering process and the 
interpolation will be discussed. For more detailed discussion 
of the ordering method by Kohonen network see. The 
Kohonen neural network is a two-layered non-supervised 
learning neural network. Self organizing networks, like the 
applied Kohonen net, organize the input data during the so 
called learning phase without any supervision. The most 
important part of the algorithm is the training rule, which 
modifies the network according of the input points. Let a set 
of points Pi(i = 1, . . . , n) (scattered data) and a set of vectors 
ti(i = 1, . . . , n) be given on the plane. Our first task is to 
determine the order of the points for the interpolation 
problem. 
Miklos Hoffmann and Emőd Kovacs the Kohonen net is used 
to order the points. The first layer of neurons is called input 
layer and contains the two input neurons which pick up the 
data, the planar points. The input neurons are entirely 
interconnected to a second, competitive layer, containing m 
neurons (where m _ n, usually m = 4n). The weights 
associated with the connections are adjusted during training 
by the following rule: — Coordinates of the scattered points: 
Pi(x1i, x2i, x3i) 
 (i = 1, . . . , n) — Coordinates of the output points: Qj (w1j 
,w2j ,w3j ) 
 (j = 1, . . . ,m)  
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STEP 1. Initialize the weights wsj , (s = 1, 2, 3 j = 1, . . . ,m) 
as small random values around the average of the 
coordinates of the input points. Let the training time t 
= 1  

STEP 2. Present new input values (x1i0 , x2i0 , x3i0 ), as the 
coordinates of a randomly selected input point pi0 

STEP 3. Compute the Euclidean distance of all output nodes 
to the input point: 
dj =∑ ௦௜଴ݔ) − ௦௝)ଶଷ௦ୀଵݓ  

STEP 4. Find the winning unit qj0 as the node which has the 
minimum distance to the input point, so where j0 is 
the value for which  
dj0 = min (dj ) 

STEP 5. Compute the neighborhood N(t) = (j0, j1, . . . , jk) 
STEP 6. Update the weights (i.e. the coordinates) of the nodes 

in the neighborhood by the following equation: 
 
Wsj (t + 1) = wsj (t) + (ݐ)ߟ(xsi0 − wsj (t))         ∀j ∈ N(t) 

Where (ݐ)ߟ is a so called gain term, a Gaussian 
function decreasing in time. 

STEP 7. Let t = t + 1. Repeat STEP 2-7 until the network is 
trained.  

         The network is said to be trained if all the input points 
are on the polygon, that is for all the input points Pi(i = 1, . . . 
,m) there is an output vector oj such that after a certain time t0 
the Euclidean distance of oj and Pi is smaller than a 
predefined limit. A stronger convergence can be obtained if 
we require that the output vectors which do not converge to an 
input vector be on the line determined by its two neighbouring 
output vectors. This stronger convergence is important 
especially in term of the smoothness of the future curve. After 
the ordering process the same algorithm can be applied to 
calculate the interpolation curve as we described above. At 
this part of the process it is irrelevant, that the input points 
were scattered. 
  

RESULTS 
This section presents an investigative analysis of the IB 
method for image clustering. Experimental results 
demonstrate the IB method’s ability to discover an optimal 
number of clusters in the database. Retrieval experiments are 
used to evaluate the clustering quality of the proposed method 
and of the various clustering algorithms introduced. The 
database used throughout the experiments consists of several 
images selectively hand-picked from the MIT database to 
create different categories.   
The images within each category have similar colors and color 
spatial layout, and can be labeled with a high-level semantic 
description. The bottom-up clustering method was applied to 
our database of several images. The clustering is performed on 
the GMM image representation. We started with several 
clusters where each image model is a cluster. After several 
steps all the images were grouped into a single cluster. The 
given database was thus arranged in a tree structure. The loss 
of mutual information during each merging step of the 
clustering process is shown in Figure (i, ii). After zoom the 
reports experts can easily identify the diseases occurred in 

report we are perform two different types of zooming those 
are basic zoom and lens zoom. The labels associated with the 
image indicate the number of clusters created in the 
corresponding step. There is no need to present the 
information loss during the entire clustering process, since 
meaningful changes occur only towards the end of the 
process. There is a gradual increase in information loss until 
we reach a point of significant loss of information. This point 
helps us determine a meaningful” number of clusters existing 
in the database. From this point on, every merge causes a 
significant degradation of information and therefore leads to a 
worse clustering scenario. The first significant jump in the 
graph is found in the transition from different clusters.  
 
 

 
 
 

 

 
   
   (i)Basic Zoom              (ii) lens Zoom           (iii) ellipse 
 

CONCLUSION 
In this paper, we have tried to make use of the nature of B-
splines ௜ܰ௞(t) to improve the performance of the existing 
parameterizations. First, parameter values are used as knot 
values. It gives us nice-looking curves. More specifically, 
small bulges are obtained between data points. The 
computation of B-spline interpolation is faster and simpler. 
However, this scheme doesn’t work well in cases of other than 
order 4.On the other hand, universal parameterizations gives 
us more natural looking curves while the curves are 
transformation invariant. The computation of interpolation is 
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much simpler and faster because the selection of parameter 
and knot values does not depend on data points at hand. 
Image variations including illumination irregularities, texture 
and other artifacts are not accounted for in the models used. 
The additional features influence on clustering quality should 
be investigated. Future work entails making the current 
method more feasible for large databases and using the tree 
structure created by the AIB algorithm, for the Creation of a 
“user friendly” browsing environment. 
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